Analogy-Driven 3D Style Transfer

[Eurographics 2014]

Chongyang Ma*‡ Haibin Huang† Alla Sheffer*
Evangelos Kalogerakis† Rui Wang†

*University of British Columbia
†University of Massachusetts Amherst
‡University of Southern California
Shape Analogies

source

exemplar

? = target

output

(1)

(2)

(3)
Shape Analogies

source

exemplar

?

target

output

(1)

(2)

(3)
Style Transfer

source

exemplar

target

output
Style Transfer

source

exemplar

target

output
Shape Analysis

• Symmetry detection
 – [TW05, MGP06, PMW*08, MBB10]

• Full/partial mapping
 – [SAPH04, vKZHCO11, KLM*12, HZG*12, SNB*12]

• Shape analogies for retrieval
 – [ROA*13]
Part-based Shape Synthesis

• User-assisted assembly
 – [FKS*04, CKGK11]

• Randomized from shape grammars
 – [BWS10, TYK*12]

• Automatic from pre-segmented database
 – [KCKK12, XZCOC12, SFCH12]
Deformation/Style Transfer

- Deformation Transfer
 - [SP04]
 - Continuous mapping, no structural difference
Deformation/Style Transfer

• Deformation Transfer
 – [SP04]
 – Continuous mapping, no structural difference

• 2D Style Transfer
 – [HJO*01, HOCS02, FTP03, LZW*13]
 – Not applicable to 3D
Deformation/Style Transfer

• Deformation Transfer
 – [SP04]
 – Continuous mapping, no structural difference

• 2D Style Transfer
 – [HJO*01, HOCS02, FTP03]
 – Not applicable to 3D

• 3D Part-Scale Transfer
 – [XLZ*10]
 – Require pre-segmentation and one-to-one mapping
Pre-Processing

• Consistently scale and align input models
 – Bounding boxes
 – Upright orientation

• Uniformly sample model surface
 – Point sample set \(\{s\} \)
 – Sample position \(p(s) \) and normal \(n(s) \)
Algorithm Overview

source

exemplar

output
Algorithm Overview

Source-Exemplar Correspondence
Algorithm Overview

Input

Source-Target Possible Transformations
Algorithm Overview

Input

source

exemplar

→

target

Analogy Optimization
Algorithm Overview
Source-Exemplar Correspondence

• Pair-wise sample distance

\[d(s_e, s_s) = |\hat{\mathbf{p}}(s_s) - \hat{\mathbf{p}}(s_e)|^2 + \lambda \cdot \cos^{-1}(\mathbf{n}(s_s) \cdot \mathbf{n}(s_e)) \]

• Minimize sum of pair-wise distance
 – Hungarian algorithm [Kuh55]
Transformation Selection

• Initial candidate set
 – Votes from all pairs of source and target samples
 – Best align local coordinate systems

• Selected transformations \(\{Q\} \) [MGP06]
 – Dominant modes from mean-shift clustering
 – Associated subsets of target samples \(\{s_t\} \)

\[
|Q(p(s_t)) - p(s_s)| < \delta_p, \quad Q(n(s_t)) \cdot n(s_s) > \delta_n
\]
Analogy Optimization

• Source-to-target analogy
 – A subset of selected transformation
 – Each target sample associated to one transformation

• Multi-label energy optimization
 – Simplicity: unary term
 – Compactness: pairwise term
 – Continuity: regularization term
Analogy Optimization

- Source-to-target analogy
 - A subset of selected transformation
 - Each target sample associated to one transformation

- Multi-label energy optimization
Algorithm – Scan Completion

partial scan template source exemplar
Algorithm – Scan Completion

- partial scan
- template
- exemplar
- source
Algorithm – Scan Completion

partial scan template source target exemplar
Algorithm – Scan Completion

- partial scan
- template
- source
- target
- exemplar
Algorithm – Scan Completion

- partial scan
- template
- source
- exemplar
- target
- output
Algorithm – Scan Completion

- partial scan
- template
- source
- exemplar
- target
- output
Algorithm – Scan Completion

- Partial scan
- Template
- Source
- Exemplar
- Target
- Output
- Reconstructed result
Results – 2D Style Transfer

source

target

exemplar

output
Results – 2D Style Transfer

source

exemplar

target

output
Results – 2D Style Transfer

source

exemplar

target

output
Results – 2D Style Transfer

source
exemplar

output
Results – 3D Style Transfer
Results – 3D Style Transfer
Results – 3D Style Transfer

source	target 1	target 2	target 3
exemplar A | output 1A | output 2A | output 3A
exemplar B | ? | ? | ?
Results – 3D Style Transfer
Results – 3D Style Exchange
Results – 3D Style Exchange

source
target 1
target 2
exemplar
Results – 3D Style Exchange

source

exemplar

output 1

output 2
Results – 3D Style Exchange

target 1
source
target 2
exemplar
Results – 3D Style Exchange

target 1 source target 2
output 1 exemplar output 2

?
Results – 3D Style Exchange
Results – Scan Completion

- template
- partial scan
- output
Results – Scan Completion

template

exemplar

output
Comparison

Style transfer based on anisotropic part scaling

source exemplar target

[XLZ* 2010] our result
Comparison

Template based scan completion

exemplar template [KS05] our result
Conclusion

• A analogy-driven shape synthesis framework
 – Automatically transfer diverse style characteristics between 3D shapes

• A multi-label optimization algorithm
 – Assemble simple, compact and continuous shape analogies
Limitations

• Symmetry between source and target only
 – No constraints for self-symmetric target
Limitations

• Overlapping mesh patches
 – No stitching
Limitations

- One reasonable solution only
 - Ambiguity
Future work

• Free-form deformation
 – Organic shapes

• Automatic input alignment
 – Shape matching and analysis tools

• Infer a source shape
 – Given only the target and exemplar
Acknowledgements

• Niloy Mitra and Richard Zhang
 – Source code
• Daniel Cohen-Or
 – Comments on paper
• Liangliang Nan
 – Scanned vase data
• Mikhail Bessmeltsev and Andrew McGregor
 – Images and videos
• NSERC and GRAND NCE
 – Funding
Thank you!